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— Study group outline —

Let K be a Henselian field of characteristic 0 with residue field k of characteristic
p > 0. We do not want to assume that k is perfect. Let Br(K) = H2(K,K

×
) be

the Brauer group. This is a torsion group, so we have

Br(K) = Br(K){p} ⊕
⊕
ℓ ̸=p

Br(K){ℓ} .

The Kummer sequence gives that Br(Knr) is a p-primary torsion group. Then one
can define the residue map r that fits into an exact sequence

(1) 0 → Br(k){ℓ} → Br(K){ℓ} r−→ H1(k,Qℓ/Zℓ) → 0 .

This sequence is split by the choice of a uniformiser. If k is perfect, then Br(Knr) =
0, so there is a similar exact sequence for all of Br(K), but in general this is not
so. One task of the study group is to understand Kato’s description of Br(K){p}
by means of a filtration fil•Br(K){p} in terms of the Swan conductor (defined
using symbols), see [Kat89]. Exercise: relate a similar filtration on H1(K,Q/Z) to
the upper ramification filtration of Gal(K/K). Note that fil0Br(K){p} is exactly
the subgroup of elements that die in Br(Knr), so fil0Br(K){p} fits into an exact
sequence like (1).

To be able to work with the Brauer group of a variety we need a more general
version of the above, where fields are replaced by rings. Understanding the filtration
on the Brauer group of a ring requires understanding the p-adic vanishing cycles
spectral sequence [BK86] (which reduces questions about the generic fibre to the
special fibre, i.e., char 0 to char p) and the de Rham–Witt complex [Ill79]. All
this leads to the definition of the refined Swan conductor rswn that allows one to
understand the graded factors filnBr(K)/filn+1Br(K).

Now let F be a p-adic field and let X be a smooth, projective variety over F with
good reduction. Let X → SpecOF be a smooth and proper scheme with generic
fibreX. LetK = F (X). The filtration filnBr(K

h), where h stands for henselisation,
pulls back to a filtration on Br(X) := H2

ét(X,Gm). The piece fil0Br(X) behaves
like the prime-to-p part: one has the residue map r : fil0Br(X) → H1

ét(X0,Q/Z),
where X0 is the special fibre. This allows one to compute the evaluation of elements
of fil0Br(X) on F -points of X by specialising the residue at the reduction of the
point. The main achievement of [BN23] is the calculation of evaluation at F -points
of X of the Brauer elements that belong to higher pieces filnBr(X), n ≥ 1, in terms
of the refined Swan conductor, see [BN23, Theorem B]. The proof uses the analysis
of behaviour of the refined Swan conductor under blowing-up.

This has nice applications to the Brauer–Manin obstruction:
1
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For a variety X over a field k, an element A ∈ Br(X) and a k-algebra R we
define the evaluation map evA : X(R) → Br(R) by evA(P ) = A(P ).

Let k be a number field, let Ωk be the set of all places of k, and let Ak be the
ring of adèles of k. For a subset S ⊂ Ωk we denote by AS

k the adèles without
components for the places in S. By local class field theory we have the local
invariant invv : Br(kv) → Q/Z, which is an isomorphism for non-archimedean v,
injective onto 1

2Z/Z if kv ≃ R, and zero if kv ≃ C. The local invariant allows us
to think of evA as a map X(kv) → Q/Z. The standard spreading-out argument
[CTS21, Proposition 13.3.1] based on the fact that Br(OF ) = 0, where OF is the
ring of integers of a p-adic field F , shows that the map

(2) evA : X(Ak) →
∏
v∈Ωk

Q/Z

factors through the direct
⊕

v ∈ ΩkQ/Z. Thus we have a well defined pairing,
called the Brauer-Manin pairing,

X(Ak)× Br(X) → Q/Z
sending (Mv)v∈Ωk

and A ∈ Br(X) to the sum
∑

v∈Ωk
evA(Mv) ∈ Q/Z (which is

actually a finite sum). The Brauer-Manin set X(Ak)
Br is the left kernel of (2). We

can also consider larger sets X(Ak)
B , where B ⊂ Br(X).

It is natural to ask: which places of k show up in the Brauer–Manin set?

Definition 0.1. A place v of k is irrelevant if evA : X(Ak) → Q/Z is constant for
all A ∈ Br(X).

Lemma 0.2. Assume X(Ak)
Br ̸= ∅. Let S be a set of places of k containing at

least one non-archimedian place. The following conditions are equivalent:

(i) All primes not in S are irrelevant.
(ii) The set X(AS

k ) is a direct factor of X(Ak)
Br.

If this holds, then X(Ak)
Br = Z ×X(AS

k ) where Z is a closed subset X(AΩk\S
k ).

Recall that a variety Y over a perfect field of characteristic p is ordinary if

Hj(Y,Bi
Y ) = 0 for all i and j, where Bi

Y := Im[Ωi−1
Y

d−→ Ωi
Y ] is the sheaf of exact

i-forms. For example, a K3 surface Y over a finite field F is ordinary if and only if
the trace of Frobenius acting on H2

ét(YF,Qℓ), ℓ ̸= p, is not divisible by p.
The following is [BN23, Theorem C].

Theorem 0.3. (Bright-Newton) Let X be a smooth, projective and geometrically
integral variety over a number field k such that H2(X,OX) ̸= 0. Then every prime v
of k of good, ordinary reduction, with residue characteristic p, it potentially relevant:
there exists a finite extension K/k, a place w of K over v, and an element A ∈
Br(XK){p} such that the evaluation map evA ; X(Kw) → Q/Z is non-constant.

Sketch of proof: Let i : SpecFv → SpecOv and Spec kv → SpecOv be the
natural closed and open immersions, respectively. Let X → SpecOv be a smooth
proper morphism with generic fibre Xv and special fibre XFv

. By an abuse of
notation, we denote by i and j the embeddings of XFv

and of Xv, respectively, into

the pullback of X to the ring of integers of kv.
Consider the spectral sequence of p-adic vanishing cycles

Hn
ét(XFv

, i
∗
Rmj∗Z/pr(1)) ⇒ Hn+m

ét (Xv,Z/pr(1)) ,
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and similar sequences with coefficients in Zp(1) and Qp(1). Let gr0H
2
ét(Xv,Qp(1))

be the image of

H2
ét(Xv,Qp(1)) → H0

ét(XFv
, i

∗
R2j∗Qp(1)) .

Using the assumption that XFv
is ordinary, the Hodge-Tate decomposition [BK86,

Theorem 0.7(iii)] gives an isomorphism of Gal(kv/kv)-modules

gr0H
2
ét(Xv,Qp(1))⊗Qp

Cp
∼= H0(Xv,Ω

2)⊗kv
Cp(−2) ,

where Gal(kv/kv) naturally acts on Cp, the completion of kv. Thus the assumption

H2(X,OX) ̸= 0 implies that gr0H
2
ét(Xv,Qp(1)) ̸= 0. It follows that the image of

H2
ét(Xv,Z/pr(1)) → H0

ét(XFv
, i

∗
R2j∗Z/pr(1))

is non-zero for some r ≥ 1. Take an element of H2
ét(Xv,Z/pr(1)) with non-zero

image. It comes from H2
ét(X,Z/pr(1)), because the natural map between these

groups is an isomorphism by proper base change. After a finite extension of k we
may assume that it comes from H2

ét(X,Z/pr(1)), thus giving a desired Brauer class.
Let K = kv(X) and let Kh be the henselisation of K for the discrete valuation

inherited from kv. We have a spectral sequence of vanishing cycles

Hn
ét(XFv

, i∗Rmj∗Z/pr(1)) ⇒ Hn+m
ét (Xv,Z/pr(1)) .

A similar sequence in Galois cohomology is

Hn(Fv(XFv ), H
m(Kh

nr,Z/pr(1)) ⇒ Hn+m(Kh,Z/pr(1)) .

These sequences are compatible under restriction to the generic point, so we get a
commutative diagram

H2
ét(Xv,Z/pr(1)) H0

ét(XFv , i
∗R2j∗Z/pr(1))

H2(Kh,Z/pr(1)) H2(Kh
nr,Z/pr(1))

One proves that the right-hand vertical map is injective [BN23, Lemma 3.4]. (This
is non-trivial. The case r = 1 is due to Bloch–Kato [BK86, Proposition 6.1(i)]
which was originally proved using Gabber’s injectivity results for étale cohomology
generalising work of Bloch-Ogus on the Gersten conjecture.) So our Brauer class
gives an element of H2(Kh,Z/pr(1)) with non-zero image in H2(Kh

nr,Z/pr(1)), so
it’s not in fil0 of Kato’s filtration (This is due to Kato, see [BN23, Proposition 2.6].
Recall that fil0 is the source of the residue map. Note that in the ℓ-adic situation
fil0 is the whole group, for ℓ ̸= p.) Using the crucial relation between the refined
Swan conductor and evaluation map [BN23, Theorem B], Bright and Newton
show in [BN23, Theorem A] that the Brauer elements that have constant evalua-
tion maps over all extensions of kv, give rise to elements of fil0H

2(Kh,Z/pr(1)). □

By being slightly more precise, the same argument can be used to show that in
this result one can take A ∈ Br(XK)[p], see [Pag23, Theorem 4.5].

For a prime v of k we denote by pv the residue characteristic of kv and by ev the
absolute ramification index of kv.
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Theorem 0.4. (Bright-Newton) Let X be a smooth, projective and geometrically
integral variety over a number field k such that Pic(Xk) is torsion-free. If v is a
prime of good reduction for X such that ev < pv − 1 and H0(XFv

,Ω1) = 0, then v
is irrelevant.

Proof. This is [BN23, Theorem D]. One shows that in these assumptions we have
Br(X) = fil0Br(X). For this one needs to show that the refined Swan conductor is
zero on filnBr(X) where n ≥ 1. This is deduced from explicit formulae describing
the action of multiplication by p on Kato’s filtration filn and on the refined Swan
conductor in terms of the Cartier operator on differential forms, see [BN23, Section
2] and [Pag23, Section 3]. For A ∈ Br(X){ℓ}, ℓ ̸= p, the statement follows from
the fact that XFv

has no connected unramified cyclic covering of degree ℓ. □

In particular, for a K3 surface over Q, odd primes of good reduction are irrele-
vant, see [BN23, Remark 7.5]. M. Pagano showed that for K3 surfaces the prime 2
can be relevant. In the ordinary case there is a somewhat stronger version:

Theorem 0.5. (M. Pagano) Let X be a smooth, projective and geometrically
integral variety over a number field k. Let v be a prime of k at which X has good
ordinary reduction. Assume that H0(XFv ,Ω

1) = 0 and H1(XFv
,Z/pv) = 0. If

pv − 1 does not divide ev, then v is irrelevant.

There is a result applicable to non-ordinary reduction of K3 surfaces:

Theorem 0.6. (M. Pagano, Theorem 1.4) Let X be a K3 surface with good
non-ordinary reduction at v. If ev ≤ pv − 1, then v is irrelevant.

— Schedule —

14:00-15:30, Week 1: Room 342, Week 2-11: Room 140

1. Overview + organisational meeting (4 October) Alexei and Oli

2. The logarithmic Hodge-Witt sheaf (11 October) Alex

Let k be a perfect field of characteristic p > 0 and let X be a smooth
scheme over k. As predicted by Milne, the logarithmic Hodge-Witt sheaf
WrΩ

q
X,log plays the role of p-adic counterpart to the ℓ-adic sheaf µ⊗q

ℓr . It is

defined to be the subsheaf of the Deligne-Illusie de Rham-Witt sheaf WrΩ
q
X

which is étale locally generated by sections d log[x1]r ∧ · · · ∧ d log[xq]r for
x1, . . . , xq ∈ O∗

X . For example, the d log map factors through the Milnor
K-theory sheaf KMil

q,X and the p-adic analogue of the norm residue theorem is

the Bloch-Gabber-Kato theorem [BK86]:

d log : KMil
q,X/pr

∼−→ WrΩ
q
X,log .

The aim of this talk is to first define the de Rham-Witt complex WrΩ
•
X with

the maps d, F, V,R following [Ill79, I. 1]. Then recall the canonical isomorphism

H∗(X,WrΩ
•
X) ∼= H∗

cris(X/Wr(k)) .
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[Ill79, II.1 Théorème 1.4]. Finally, define the subsheaf WrΩ
q
X,log and show that

it is the kernel of the surjective map

1− F : WrΩ
q
X ↠ WrΩ

q
X/dV r−1Ωq

X

(see [CTSS83, Lemme 2].)

3. p-torsion in the Brauer group (18 October) Ambrus

Before moving to the mixed characteristic situation, we will first convince
ourselves of the relevance of p-adic cohomology to the study of Brauer groups
by studying the case where X is defined over a field k of the characteristic
p > 0. In this setting, at least in the smooth case, the philosophy is that
invariants of X should have to do with the slopes of Frobenius on the crystalline
cohomology of X. For example, suppose that we wish to study the pr-torsion
of Br(X). The reason that this is more difficult (and more interesting) than for
prime-to-p-torsion is that the Kummer sequence for the multiplication-by-pr

map fails to be exact on the right in the the étale topology. But it is exact
for the fppf topology, and hence Br(X)[pr] is a quotient of H2(Xfl, µpr ), with
kernel NS(X)/pr. Flat cohomology groups are difficult to work with, but for
smooth X the natural map

R1ϵ∗µpr → WrΩ
1
X,log

is an isomorphism for all r ≥ 1, where ϵ : Xfl → Xét denotes the restriction of
topoi. In particular, H2(Xfl, µpr ) ∼= H1(X,WrΩ

1
X,log), and since WrΩ

1
X,log[−1]

sits inside the de Rham-Witt complex WrΩ
•
X , taking hypercohomology gives

a map H1(X,WrΩ
1
X,log) → H2

cris(X/Wr(k)). This gives the link between

Br(X)[pr] and H2
cris(X/Wr(k)). The task of this talk is to present this in more

detail following [Ill79, II.5]. In general things can be quite complicated, but one
might like to present the theory through the classic example of a K3 surface X
of finite height h, where you find that

Br(Xk)[p
∞] ≃ (Qp/Zp)

22−ρ−2h

where ρ is the geometric Picard number of X.

4. p-adic vanishing cycles - local results (25 October) Yuan

Now we move to the mixed characteristic situation relevant to [BN23].
Let K be a complete discrete valuation field of characteristic 0 with valuation
ring OK and (not necessarily perfect) residue field k of characteristic p > 0.
Let X be a smooth and proper scheme over OK . The goal of this talk and the
next is to understand the filtration on the p-adic étale cohomology Hn

ét(XK ,Zp)
(as Galois representations) coming from the p-adic vanishing cycles spectral
sequence, at least in the case when the special fibre Xk is ordinary. This is the
topic of [BK86]. The aim of this talk is to understand the local structure of the
vanishing cycles sheaf i∗Rqj∗Z/pr(q) via the symbol filtration. These results
will be used in Talk 5 and in Talk 6. The speaker should cover [BK86, Theorem
1.4], and give some idea of the proof (which is given in §2-§6, loc. cit.). Note
that since the local rings on Xk are direct limits of smooth Fp-algebras, the
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theory of WrΩ
q
X,log developed in Talk 2 carries over to the non-perfect situation.

5. p-adic vanishing cycles - global results (1 November) Nina

Introduce the notion of an ordinary variety following [BK86, §7]. Then
cover the results in §9, loc. cit. We will use these results in Talk 11 but note
that we only need them in the easier case that the special fibre is ordinary, so
you may wish to rely on the easier Corollary 8.2 rather than Theorem 8.1.

6. The refined Swan conductor (8 November) Oli
For a ring R, let Z/n(q) be the usual q-th Tate twist of the constant sheaf Z/n
on Rét if n ∈ R∗. If R is smooth over a field of characteristic p > 0 then write
n = prm with (m, p) = 1 and define

Z/n(q) := Z/m(q)⊕WrΩ
q
R,log[−q] ∈ Db(Rét) .

Define Hq(R) := lim−→n
Hq(Rét,Z/n(q−1)) whenever n ∈ R∗ or R is smooth over

a field of characteristic p > 0.
The aim of this talk is to present the material in [BN23, §2.1-§2.3], which

recalls and generalises [Kat89]. Let K be a Henselian discrete valuation field
with residue field F of characteristic p > 0. One defines an increasing filtration
fil•H

q(K) and the Swan conductor of χ ∈ Hq(K) is defined to be the least
n ≥ 0 such that χ ∈ filnH

q(K). The graded pieces of the filtration inject (via

the refined Swan conductor) into Ωq
F ⊕ Ωq−1

F . The main case of interest for
applications to Brauer groups is the case q = 2 since then H2(K) = Br(K)
by the Kummer sequence, but the general case is also very interesting. If X
is a variety over a field k, let Kh be the fraction field of the Henselisation of
OX,k(X). Then one defines a filtration fil•Br(X) by taking the pre-image of

fil•Br(K
h) by the natural map.

7. The residue map and the tame part (15 November) Netan
The first task in this talk is to define the residue map ∂ : fil0H

q(K) → Hq−1(F )
and compare it to the classical residue map on Brauer groups in the case q = 2,
following [BN23, §2.4-§2.5]. Next, let k be a finite extension of Qp and let X be
a smooth, geometrically irreducible variety over k with smooth model X over
Ok and geometrically irreducible special fibre Y . Given A ∈ Br(X) one has an
evaluation map evA : X (Ok) → Br(k). Following [BN23, §3], prove Proposition
3.1 and its corollaries which describe the evaluation map on the smallest part
of Kato’s filtration fil0Br(X).

8. The refined Swan conductor and blowing-up (22 November) Justin
This talk will follow [BN23, §4-§5] where they study how the refined Swan
conductor behaves under blowing-up the model X in a smooth point. This will
be essential in Talk 10.

9. Calculations for Pn (29 November) Peter
This talk follows [BN23, §6] to describe the graded pieces of Kato’s Swan
conductor filtration on H1(U,Q/Z) := lim−→n

H1(U,Z/n) where U = Pn
k\Z is

the complement of a hyperplane Z inside projective space over a field k of
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characteristic p. Along with Talk 8, this computation will be the other essential
ingredient in Talk 10.

10. Proof of Theorem B (6 December) Alexei
The main achievement of [BN23] is Theorem B, which facilitates the com-
putation of the evaluation map associated to elements in Br(X) of p-power
order. (Note that the evaluation map for elements of order coprime to p is
well-understood. See [CTS96], [CTS13] and [Bri15]). In fact, Bright-Newton
prove the stronger Theorem 8.1. This talk will state and prove Theorem 8.1
using the calculations from Talk 8 and Talk 9. The proof is based on an
inductive argument using a chain of blow-ups in which the Swan conductor
decreases at the exceptional divisors (the projective spaces appearing in Talk 8)
until reaching fil0, whereupon the evaluation map is understood via Talk 7.

11. Proof of Theorem A and applications to the Brauer-Manin obstruction
(13 December) Rachel
Now that we have Theorem B available for evaluating the evaluation map for
p-power order elements of Br(X), one can ask for applications. For example, let
k be a finite extension of Qp and let X be a smooth, geometrically irreducible
variety over k with smooth model X over Ok and geometrically integral special
fibre Y . Given A ∈ Br(X) one may ask when evA : X (Ok) → Br(k) factors
through X (Ok) → X (Ok/π

i) for any i ≥ 1, where π is a uniformiser of Ok.
(Note that if A has order coprime to p then evA factors through the special fibre
[Bri15, §5]). With this in mind, define the evaluation filtration Ev•Br(X) as
follows:
For a finite extension k′/k of ramification index e(k′/k) and uniformiser π′, for
P ∈ X (Ok′) and r ≥ 1 let B(P, r) ⊂ X (Ok′) be the set of points the same
reduction as P modulo π′r. Define

Ev−2Br(X) := {A ∈ Br(X) | ∀k′/k, evA is zero on X (Ok′)}

Ev−1Br(X) := {A ∈ Br(X) | ∀k′/k, evA is constant on X (Ok′)}

and

EvnBr(X) := {A ∈ Br(X) | ∀k′/k finite,∀P ∈ X (Ok′),

evA is constant on B(P, e(k′/k)(n+ 1))}

for n ≥ 0.
The first part of this talk will follow [BN23, §9] in proving their Theorem

A, which describes Ev•Br(X) in terms of Kato’s filtration fil•Br(X) and the
refined Swan conductor. The proof uses Theorem B. Note that Ev−2Br(X) is
the image of Br(X ) inside Br(X) by [BN23, Corollary 3.7] (actually this is true
more generally for X just regular and proper over Ok by the main result of
[SS14]).

The second part will present implications in the study of the Brauer-Manin
obstruction. One should state and prove Theorem C and Theorem D of [BN23],
as described in the study group outline, following §11. Note that the proofs also
use the results of Talk 5. If time permits, one might also discuss Theorem 1.3
and Theorem 1.4 of [Pag23].
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[CTS96] J.-L. Colliot-Thélène, S. Saito, Zéro-cycles sur les variétés p-adiques et groupe de Brauer,
Int. Math. Res. Not. 4 (1996), 151-160.

[CTS13] J.-L. Colliot-Thélène, A. N. Skorobogatov, Good reduction of the Brauer–Manin obstruc-

tion, Trans. Am. Math. Soc. 365(2) (2013), 579–590.
[CTS21] J.-L. Colliot-Thélène, A. N. Skorobogatov, The Brauer–Grothendieck group, Ergebnisse

der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 71, Springer, 2021.

[Ill79] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École. Norm.
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